Journal of Biological Chemistry www.jbc.org

First Published on March 25, 2015, doi: 10.1074/jbc.M115.637132 May 1, 2015 The Journal of Biological Chemistry. 290, 11393-11402.

Pathogenic Mutations Differentially Affect the Catalytic Activities of the Human B₁₂-processing Chaperone CblC and Increase Futile Redox Cycling^{*}

Carmen Gherasim, Markus Ruetz, Zhu Li, Stephanie Hudolin and Ruma Baneriee $^{\rm l}$

+ Author Affiliations

J¹ To whom correspondence should be addressed: 4220C MSRB III, 1150 W. Medical Center Dr., University of Michigan, Ann Arbor, MI 48109-0600. Tel: 734-615-5238; E-mail: rbanerje@umich.edu.

Capsule

Background: CbIC processes cobalamins entering a cell to a common intermediate.

Results: Pathogenic mutations at Arg-161 weaken glutathione binding to CbIC and stabilize cob(II)alamin.

Conclusion: The R161Q/G mutations impair the dealkylation but not the decyanation activity of CbIC.

Significance: Increased redox cycling by the CbIC mutants explains the observed cellular oxidative stress associated with this disorder.

Abstract

Human CbIC catalyzes the elimination of the upper axial ligand in cobalamin or B_{12} derivatives entering the cell from circulation. This processing step is critical for assimilation of dietary cobalamin into the active cofactor forms that support the B12-dependent enzymes, methionine synthase and methylmalonyl-CoA mutase. Using a modified nitroreductase scaffold tailored to bind cobalamin and glutathione, CblC exhibits versatility in the mechanism by which it removes cyano versus alkyl ligands in cobalamin. In this study, we have characterized the effects of two pathogenic missense mutations at the same residue, R161G and R161Q, which are associated with early and late onset of the CbIC disorder, respectively. We find that the R161Q and R161G CbIC mutants display lower protein stability and decreased dealkylation but not decyanation activity, suggesting that cyanocobalamin might be therapeutically useful for patients carrying mutations at Arg-161. The mutant proteins also exhibit impaired glutathione binding. In the presence of physiologically relevant glutathione concentrations, stabilization of the cob(II)alamin derivative is observed, which occurs at the expense of increased oxidation of glutathione. Futile redox cycling, which is suppressed in wild-type human CbIC, explains the reported increase in oxidative stress levels associated with the CbIC disorder.

> Adenosylcobalamin (AdoCbl) Chaperone Enzyme Kinetics Oxidation-Reduction (Redox) Trafficking Cofactor

Footnotes

 \dashv^* This work was supported by National Institutes of Health Grant DK45776 (to R. B.).

Received January 7, 2015. Revision received March 16, 2015.

 $\ensuremath{\mathbbmmode{\mathbbmmu}mute{\mathbbmmode{\mathbbmmu}mute{\mathbbmmu}mute{\mathbbmmode{\mathbbmmu}mutem{\mathbbmmu}mutem{\mathbbmmu}mutem{\mathbbmmu}mutem{\dots}mutem}mutem{\dots}mutem}mutem{\dots}mutem}mutem{\dots}mute$

