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Objectives: Vitamin B12, or B12, is an essential nutrient for humans, and its deficiency is a public health
problem, especially in elderly population. Around 30% of circulating total B12 levels are attached to
transcobalamin II (TCN2), being referred as holotranscobalamin (holo-TC), and representing the biologically
active fraction. After cellular uptake, B12 participates in the homocysteine (Hcy) metabolism. The potential
influence of the described TCN2 776CNG polymorphism upon B12 intracellular delivery is a current target of
research and we aimed to investigate its biochemical significance upon a healthy adult population.

Design and methods: The TCN2 776CNG polymorphism was screened by PCR-RFLP in 122 individuals.
Concentrations of plasma total B12, holo-TC, total Hcy and folate, as well as red blood cell folate, were
determined.
Results and conclusions: The studied polymorphism is common in the Portuguese population and
significantly affects holo-TC but neither total B12 nor total Hcy plasma concentrations, confirming that the
TCN2 776CNG genotype exerts a significant influence upon B12 cellular delivery.

© 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Introduction

Vitamin B12 or cobalamin is an essential nutrient for humans,
because two of its derivatives, methylcobalamin and adenosylcoba-
lamin, act as coenzymes in important metabolic reactions [1,2].
Methylcobalamin is a cytosolic methyl carrier in the folate dependent
remethylation of homocysteine (Hcy) to methionine, reaction
mediated by methionine synthase; in mithocondria, adenosylcobala-
min is required for the isomerization of methylmalonyl-CoA into
succinyl-CoA, reaction catalyzed by methylmalonyl-CoA mutase.
Therefore, Hcy and methylmalonic acid accumulation are often used
as biomarkers for vitamin B12 status. Additionally, increased circulat-
ing levels of total Hcy are generally accepted as risk factor, not only for
vascular disease, but also for Alzheimer's disease, osteoporosis and
congenital disorders like neural tube defects [2–4].

However, and unlike micro-organisms, mammals are not capable
of synthesizing vitamin B12 and consequently developed complex
biochemical and physiological processes for its conversion from
dietary into active coenzyme forms. Cobalamin, only present in
animal products, enters the stomach bound to animal proteins and is
, Faculdade de Farmácia da
9 Lisboa, Portugal. Fax: +351
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released from the proteins by pepsin and gastric acid. The free vitamin
B12 is then bound to R-binder (haptocorrins) produced by salivary
glands. In the ileum, haptocorrin is degraded by pancreatic enzymes,
and vitamin B12 is transferred to the intrinsic factor (IF), a protein
synthesized in the gastric parietal cells, by means of a pH dependent
process. In the terminal ileum, the complex IF-cobalamin binds to IF
receptors on the membrane surface of enterocytes and is then
transferred through the ileal membrane. Vitamin B12 is subsequently
released and enters circulation where it is coupled to transcobalamin
II (TC) or to haptocorrin [5–8]. A maximum of 30% of circulating
vitamin B12 is attached to transcobalamin II and is referred as
holotranscobalamin (holo-TC), representing the biologically active
fraction that is delivered to all tissues in the body. The remaining
circulating vitamin B12 is bound to haptocorrin which is thought to
transport the surplus of vitamin B12 to the liver [9].

Vitamin B12 deficiency is nowadays a major public health problem,
and since a deficiency in this vitamin can lead to hematologic
abnormalities and irreversible neurological damage, early diagnosis is
essential [10]. In recent years, holo-TC has been suggested to be a
more sensitive indicator of vitamin B12 status, because the most
common cause of vitamin B12 deficiency, especially among the elderly
population, is failure at one of the steps to internalize cobalamin
rather than its dietary lack. Accordingly, variations in the TC protein
can affect the binding characteristics of vitamin B12 to TC or the
recognition of the holo-TC complex by the receptors responsible for
its endocytosis.
ed by Elsevier Inc. All rights reserved.
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Transcobalamin II (TC) protein is encoded by the TCN2 gene which
has been mapped to chromosome 22q12-13. The gene spans around
20 kb of genomic DNA, is structured in nine exons separated by introns
and displays considerable heterogeneity, being described more than
10 single nucleotide polymorphisms (SNP) [11]. One of them, the
c.776CNG (dbSNP ID: rs1801198) substitution originating the P259R
missense mutation, has been reported as common and potentially
interfering with vitamin B12 intracellular availability [12,13].

Several studies have been performed in order to elucidate possible
associations between this SNP in the TCN2 gene and plasma levels of
vitamin B12, folates, methylmalonic acid or Hcy [12–17]. Though
controversy exists, themost consistentfinding is that holo-TC levels are
lower in plasma from individuals homozygous for the 776G allele, than
in those bearing thewild-type genotype (776CC) [13–16,18,19]. On the
other hand, the clinical significanceof the 776CNGSNPmaybe reflected
by birth outcomes and, accordingly, some studies have found its
association with spontaneous abortion and cleft lip or palate [20–22].

During the last years, our group has been devoted to elucidate the
mechanisms underlying the correlation between an impaired Hcy
metabolism and vascular disease [2,23–26]. Moreover, besides the
known influence of folate status upon total Hcy levels, recently it has
been suggested that vitamin B12 status can also modulate the same
Hcy levels. Accordingly, the aim of the present study was to
investigate the biochemical significance of the TCN2 776CNG SNP
upon the cellular delivery of vitamin B12 in a healthy adult population
and its potential reflex on Hcy concentrations. Therefore, we
correlated the different TCN2 genotypes with various plasmatic
biomarkers of vitamin B12 status, namely holo-TC, total vitamin B12
and total Hcy concentrations.

Methods

Subjects

A group of 122 healthy Portuguese individuals (42M and 80F),
volunteers from the Faculty of Pharmacy staff and students with a
mean age of 45.9±12.6 years, has been enrolled in this study. Details
of lifestyle (i.e. smoking, alcohol consumption, medication, physical
exercise, as well as personal and family history) and routine
biochemical measurements were established using standardized
questionnaires and protocols. The following criteria for inclusion
were used: routine biochemical values within the normal range,
normal hemogram, no history of metabolic, renal or vascular
pathology and no supplementary intake of vitamins within the 2
months prior the study. The protocol was approved by the local ethics
committee, and written informed consent was obtained from all
participants.

Homocysteine, folate and vitamin B12 analysis

Overnight fasting (12 h) blood samples were drawn by venipunc-
ture from all participants. Blood was collected either into EDTA-
Table 1
Characteristics of studied population according to TCN2 genotype.

TCN2 genotype

CC

N 38
Age (year) 47 (40–49)
Total B12 (pmol/L) 349.0 (310.0–396.42)
Holo-TC (pmol/L) 66.3 (55.8–73.6)
Plasma Hcy (μmol/L) 7.8 (7.5–9.2)
Plasma folate (nmol/L) 14.5 (13.8–20.5)
RBC folate (nmol/L) 554.9 (463.9–645.7)

Values represent medians (95% CI).
⁎ Pb0.05.
containing tubes kept on ice or into sodium citrate light-protected
tubes. EDTA-blood samples were used for measurement of plasmatic
levels of total Hcy (protein-bound plus free oxidized and reduced
species), total vitamin B12 and holo-TC, as well as for preparation of
genomic DNA. Sodium citrate-blood samples were used for determi-
nation of folate levels, either in plasma or red blood cells (RBC).
Plasma was promptly separated by centrifugation at 4 °C, divided in
aliquots and stored at −20 °C until analysis. All metabolite analysis
was performed by specific immunoassays (ASSYM, Abbott Laborato-
ries, Abbott Park, IL, USA).

Genetic analysis

Genomic DNA was isolated from peripheral blood leukocytes
according to standard methods [27,28]. The 776CNG polymorphism
was screened by enzymatic hydrolysis with ScrF1 after in vitro
amplification of the target region in exon 6 of the TCN2 gene, as
previously described [16].

Statistical analysis

Descriptive analysis was used in frequency tables for categorical
(absolute) variables, and mean and standard deviation for continuous
variables. The Wilcoxon rank sum test was used to compare
continuous variables between two groups. A multivariate analysis
was performed using a linear regressionmodel considering total Hcy a
dependent variable and total B12, holo-TCN2, RBC folate, plasma
folate, age, gender, and TCN2 C776G polymorphism as independent
variables. All analyses were adjusted for subjects' age and sex. Odds
ratios were then calculated and were useful to further clarify
interactions between blood concentrations of holotranscobalamin,
total B12, total Hcy, plasma and RBC folate and TCN2 776 CNG genetic
polymorphism; the odds and 95% confidence intervals were deter-
mined. The software used was SPSS for Windows 12.0 (SPSS Inc.,
Chicago, USA 2004). All P values are two-sided; for all statistics,
significance was accepted at the 5% probability level.

Results

The characteristics of the studied population divided by transco-
balmin II genotype are presented in Table 1. The analysis of the
776CNG SNP in the cohort of 122 individuals under study revealed
that both alleles display similar relative frequencies: 51.6% for C allele
and 48.4% for G allele. Concerning the three different possible
genotypes, we could observe that 38 individuals (31.2%) carry the
wild-type genotype (776CC), while 34 (27.9%) harbor the homozy-
gous mutant genotype (776GG); the remaining 50 individuals,
representing 41.0% of the studied population, proved to be heterozy-
gous for this SNP.

The potential effect of the TCN2 776CNG polymorphism upon the
concentrations of the major biomarkers for vitamin B12 status was
evaluated and is shown in Table 1, where subjects are divided into
CG GG

50 34
49 (46–53) 48 (42–50)

316.5 (301.6–386.0) 309.9 (290.1–384.7)
60.7 (52.0–60.4) 54.2 (44.0–60.3)⁎
8.5 (8.0–9.4) 8.2 (7.6–9.7)

12.9 (12.3–16.4) 14.0 (12.8–17.2)
563.3 (476.4–675.8) 556.7 (448.4–665.8)
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three groups according to their genotype. Holo-TC plasma concentra-
tions were significantly different between the individuals carrying the
wild-type and the homozygous mutant genotype. Accordingly,
individuals homozygous for the 776G allele displayed significantly
(Pb0.05) lower holo-TC values (median 54.2 pmol/L, 95% CI 44.0–
60.3) when compared to the ones harboring the wild-type 776CC
genotype (median 66.3 pmol/L, 95% CI 55.7–73.6). On the other hand,
this SNP displayed no detectable effect on either total vitamin B12 or
total Hcy plasma levels, once no significant statistical differences were
observed in their concentrations among the different genotypes;
however, we could observe that individuals carrying the heterozygous
genotype displayed a tendency to higher Hcy values than those
harboring the homozygous, either wild-type or mutant, genotype
(Table 1 and Fig. 1). Furthermore, as folate status is a major
determinant of total Hcy levels, we analyzed plasma and RBC folate
concentrations in order to discard biased total Hcy values; the results
showed no significant differences (Table 1) among individuals.

Trying to find a correlation between the 776CNG SNP and total Hcy
values, we further stratified our population into quartiles according to
their holo-TC concentrations and compared total Hcy concentrations
among the three different genotypes in each quartile (Fig. 2). The
results showed that, in the lowest quartile, total Hcy concentrations in
776GG individuals (median 10.4 μmol/L, 95% CI 7.2–11.7) were higher
than in those harboring the wild-type genotype (median 8.0 μmol/L,
Fig. 1. TCN2 776CNG genotype and holo-TC (pmol/L), total B12 (pmol/L) and total Hcy
(μmol/L) plasma concentrations.
95% CI 7.0–9.5), but the observed difference was not statistically
significant (P=0.16) . However, in the same lowest quartile, whenwe
compared total Hcy concentrations of all individuals bearing a 776G
allele (homozygous mutant plus heterozygous) versus those harbor-
ing only the wild-type genotype, we could observe a decrease on the P
value (median 9.8 μmol/L, 95% CI 8.6–12.0 versus median 8.0 μmol/L,
95% CI 7.0–9.5, respectively; P=0.07), although not reaching
statistical significance.

Discussion

The potential influence of the TCN2 776CNG polymorphism
(P259R) upon indices of vitamin B12 status is a current target of
research, though the results are very confounding. Then, the present
work aims to contribute for the elucidation of this question.

Genotyping of a cohort of 122 healthy adult Portuguese individuals
showed that the frequency of the 776G allele is similar to those
reported for other European Caucasian populations (45% and 47% in
France and Netherlands, respectively), proving that this polymor-
phism is also extremely common in the Portuguese population [29]. In
fact, this SNP reveals different worldwide incidence, ranging from a
low prevalence in African populations (36%) to a high prevalence in
Asian populations, namely in central China (56%); in between, we can
find the Afro-Americans, the Caucasians and the Hispanics
[15,18,19,29–31]. Though the studied population could be considered
in Hardy–Weinberg equilibrium, its relative small size advises the
estimate of the TCN2 776CNG allele frequencies to be confirmed in a
larger cohort.

The biochemical significance of the 776CNG SNP upon several
indicators of vitamin B12 status has been evaluated in previous
studies, and the most consistent finding is that holo-TC values are
lower in plasma from individuals homozygous for the 776G allele than
from those homozygous for the wild-type allele [13–16,18,19]. In
accordance, the major finding of our study is that TCN2 776CNG
genotype significantly affects holo-TC but not total B12 plasma
concentrations (Fig. 1).

The lack of correlation between plasma total vitamin B12

concentrations and TCN2 genotypes is not surprising, since the
major part of plasma cobalamin is transported bound to haptocorrin,
and only a maximum of 30% circulates attached to transcobalamin II,
the assumedmetabolically active fraction. Therefore, total vitamin B12
levels within the normal range can not reliably rule out a functional
cobalamin deficiency [19].

The relationship between plasma total Hcy levels and TCN2
genotypes was also evaluated. However, we were unable to detect
any significant differences among the studied genotypes; our results
match those reported by Namour et al. [19] who observed that
heterozygous individuals display higher total Hcy levels than
individuals homozygous for the wild-type or mutant allele. Later on,
Afman et al. [16] reported that the homozygous mutant genotype was
associated with higher total Hcy concentrations and Alessio et al. [32]
observed a statistically significant increase in total Hcy levels in
children bearing the GG genotype versus the CC genotype. Unfortu-
nately, these findings could not be confirmed by several other reports
[12,13,15,17] and these results seem to confirm that Hcy metabolic
pathway is very complex and under the control of many factors, both
genetic and non-genetic.

Recently, it has been suggested that the TCN2 776CNG genotype
effect upon total Hcy concentrations could be modulated by vitamin
B12 status [13]. Accordingly, to elucidate the simultaneous effect of
both holo-TC levels and 776CNG genotype on total Hcy levels, the
studied population was stratified into quartiles according to their
holo-TC concentrations (Fig. 2) and further divided in conformity to
the displayed genotype. Our results showed that, only in the lowest
quartile of holo-TC concentrations, the individuals homozygous for
the mutant 776G allele have higher total Hcy concentrations than the



Fig. 2. Association between the TCN2 776CNG genotype and total Hcy concentrations (μmol/L) after stratification in quartiles for holo-TC concentrations (pmol/L).
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subjects bearing the wild-type genotype, though this difference had
no statistical significance (P=0.16). Furthermore, in order to increase
statistical power, we further compared total Hcy concentrations
between individuals harboring a G allele (heterozygous plus homo-
zygous mutant) and those only bearing the C allele (wild-type); the
observed statistical value was lower (P=0.07), but the small sample
size precludes any extrapolation for a biological significance.

As we referred earlier, the major finding of this study is the clear
correlation (Pb0.05) between the TCN2 776CNG genotype and plasma
holo-TC levels. However, themolecular basis of this correlation remains
to be elucidated, although several hypotheses have been advanced.

This 776CNG biallelic polymorphism originates two different
proteins carrying either a proline or an arginine at amino acid in
position 259 (P259R), respectively. In silico modeling predicts that
this substitution can potentially affect the secondary structure of the
protein, thus probably influencing the binding ability of cobalamin to
transcobalamin II [16]. Recently, however, Wuerges et al. [33] solved
the structural basis for mammalian vitamin B12 transport by TC and
stated that proline 259 is part of the solvent-exposed flexible loop
between helices α10 and α11, spatially near the N terminus, thus
suggesting that this P259R polymorphism will influence neither the
binding ability of cobalamin to TC nor the stability of the α-domain.
Additionally, an involvement of this substitution in receptor recog-
nition of holo-TC seems to be ruled out due to high sequence
variability among seven mammalian TC proteins in the vicinity of
proline 259.

The other hypothesis to explain the diminished intracellular
availability of vitamin B12 resides at the transcriptional level. In fact,
Namour et al. [19] observed lower levels of 776G-containing versus
776C-containing transcripts in heterozygous cultured cells; RNA
secondary structure prediction showed that the 776C-containing
transcript had an additional stem loop, potentially inducing a greater
stability of this transcript versus de 776G-containing one.

In summary, our results allow to reconfirm that the TCN2 776CNG
genotype exerts a significant influence upon holo-TC cellular pool;
however, the cellular enzymatic reactions dependent on vitamin B12,
namely the Hcy remethylation here evaluated, are modulated by
other factors, genetic and non-genetic, and further studies are
necessary to evaluate the effect of the aforementioned correlation
upon the biomarkers linked to the dysfunction of vitamin B12-
dependent reactions.
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